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Abstract

In this paper, we present a model-agnostic calibra-
tion methodology derived from IES’ best practices
and calibration guidelines. The calibration method-
ology relies on a 3-stage process that consist of (1)
checking input priority matrix and SA results, (2)
creating data-driven profiles for high priority inputs,
and (3) determining and deriving high-priority pa-
rameters. The process uses data analysis techniques,
Sensitivity Analisys (SA) and optimisation tools to
maximise model accuracy and minimise calibration
efforts.

IES headquarters, an office building in the UK, is
presented as case study. A model of this building
used for ongoing commissioning has been calibrated
at hourly level. Internal gains (i.e. lighting, equip-
ment and occupancy) are derived from IoT sensors
and included in the simulation as Free-From-Profiles
(FFPs). Room heating setpoints are included in the
simulation as Parametric Profiles (PPs). Sensitivity
analysis and Optimisation-based parameter search is
done by grouping spaces with similar-end use to min-
imise the number of parameters. Electricity and air
temperature calibrated to match utility data achiev-
ing a NMBE, CVRMSE and RMSE within recom-
mended thresholds. Prediction error for air tempera-
ture outputs are minimised simultaneously to ensure
that the model represents the building at space level.
We show that use of metered data and automated
tools can improve the quality of the model outputs at
energy and space level with lower consultancy efforts.

Introduction

Buildings account for 40% of the global CO2 emis-
sions (Ahmad et al., 2016). In the UK, buildings
account for 37% of the total annual greenhouse gas
emissions (Committee on Climate Change, 2013). For
the case of office buildings, it is expected that 20% of
savings could be achieved by implementing minor en-
ergy conservation measures (IPCC, 2014). Additional
major cost-effective actions could reduce energy de-
mand up to 40% (Lewry, 2016).

Building Energy Simulations (BES) have been tradi-

Figure 1: Example of three types of energy use met-
rics: baseline, current and target. Baseline and tar-
get metrics (marked with *) are calculated using cal-
ibrated models. Source: Adapted from ISO (2016).

tionally used during the design stage to inform design
decisions (Manz et al., 2018), ensure occupants’ com-
fort (ASHRAE Standard 55-2013, 2013), ensure com-
pliance with energy efficiency codes (Pacific North-
west National Laboratory, 2016), gain credits in
building rating systems, such as LEED and BREAM
(Kestner et al., 2010), and determine building perfor-
mance related to a regulation or standard, e.g. En-
ergy Performance Certificates (EPCs).

During the operational stage, a calibrated model can
be used for establishing a baseline and target en-
ergy use (see Figure 1), energy savings estimation
(M&V) (EVO, 2002), fault detection and diagnostics
(FDD) (Zimmermann et al., 2011), enhance building
intelligence through model predictive control (MPC)
(Aftab et al., 2017), enabling model-free control tech-
niques such as Reinforcement Learning (RL) (Brandi
et al., 2020), evaluation of demand-response (DR)
technologies (Seitenfus et al., 2019) and prediction
of future savings as a result of retro-commissioning
activities or large renovations (Bande et al., 2019).

In Measurement and Verification (M&V), which can
be defined as the process of determining the amount
of savings obtained through an Energy Conservation
Measures (ECMs), calibrated simulation models are
used to (1) establish a baseline energy consumption in
order to compare to energy consumption before and
after implementing an ECM and eventually estimate
savings, (2) adjust the baseline energy consumption
in case a change occurs, such as occupancy hours or
addition of new equipment, (3) assess the impact of



a single ECM when multiple ones have been imple-
mented at the same time and no individual measure-
ment is in place and (4) reduce monitoring waiting
time after ECM for early savings estimation.

The use of BES during the operational stage is sub-
ject to a successful model calibration effort which can
be defined as “the process of reducing the uncertainty
of a model by comparing the predicted output of the
model under a specific set of conditions to the ac-
tual measured data for the same set of conditions”,
(ASHRAE, 2002). Without calibration, is not pos-
sible to determine the degree of uncertainty of the
model with respect to the studied building.

However, model calibration is widely recognised as a
time consuming activity, exclusive for scientific re-
search and it often requires experienced engineers
with knowledge about the building and its charac-
teristics, The most common challenges are (Fabrizio
and Monetti, 2015):

• Lack of standardisation: The workflow carried
out is reliant on the users’ own knowledge and
experience, which can differ vastly between con-
sultants. Additionally, there is a general consen-
sus about the lack of defined methodology that
ensures completeness, consistency and trans-
parency (Raftery et al., 2011)

• Costs: Due to the lack of standardisation and
the complexity involved in creating a calibrated
model, the modelling process is significantly
more time intensive than standard compliance
models.

• Model input data: Calibrated models require
large amounts of input data to complete the pro-
cess, where models of greater complexity require
greater amounts of data. As the process is user
determined, it can be difficult to identify the
most important datasets to focus on to achieve
the calibration metrics at least effort. This fur-
ther increases the time and cost requirements of
the calibration process (Wang et al., 2019).

• Uncertainty: During manual calibration, a de-
terministic approach is typically adopted. How-
ever, not all data will impact the results of the
model to the same degree. For this reason, it
is important to identify, throughout a screening
analysis, the parameters that influence the most
the building model, such as occupancy, weather,
sensors’ accuracy an others; and define their level
of uncertainty.

• Lack of automation: The calibration process is
a manual one which relies on the experience and
skills of the modeller.

Recently, the guideline CIBSE TM63 (CIBSE, 2020)
introduces a whole building calibration and has been
widely tested and proven for building energy model
calibration. The process relies on Sensitivity Analysis
(SA), Optimisation-based parameter derivation and

iterative model evaluation. The guideline also recom-
mends cross-checking space level simulation outputs
such as air temperature and CO2 concentration to
ensure that there is a match between the measured
and simulated data at space level.

Additionally, the recent cost reduction in sensors
from buildings coming from Smart Meters (AMR),
Building Management Systems (BMS) and Internet
of Things (IoT) can improve the quality of the cal-
ibrated model. Also, richer input data can reduce
the effort required during the calibration process by
reducing the number of assumptions made to the
model, e.g. actual start/stop times of heating/cooling
plants, temperature setpoints and occupancy profiles.

In this work, we present an iterative calibration
methodology and tools that not only supports but
also complements the CIBSE TM63 guideline. This
methodology is aimed for buildings with available
sensor data consisting of three high-level stages: (1)
check input priority matrix and SA results, (2) cre-
ate data-driven profiles for high priority inputs, and
(3) determine and fine-tune high-priority parameters.
The process is repeated until the calibration metrics
are achieved, i.e. uncertainty of the building is min-
imised to acceptable levels. An office building located
in Scotland is used as case study and calibration re-
sults are presented according to recommended guide-
lines.

Methodology

The calibration methodology presented in this work
exploits the relevant available data in the studied
building, machine learning regression models, SA and
optimisation tools with the objective of reducing cal-
ibration efforts and increasing model accuracy both
at room level (e.g. air temperature) and energy level
(e.g. electricity and cooling/heating demand).
The first sub-section introduces the input priority ma-
trix concept, which is intended to work as a look up
table indicating the data required and its relative im-
portance for the model, based on its end-use. The
process can be complemented with a SA outputs anal-
ysis if a model is available at this stage. In step 2,
we present two methods for creating data-driven in-
put parameters, the Free-Form-Profiles (FFPs) and
the Parametric Profiles (PPs) which are used as in-
puts for the model. Step 3 consists of determining the
high priority parameters by doing a Sensitivity Anal-
ysis (SA) followed by a robust optimisation-based
tuning approach that minimises calibration metrics
to recommended values in existing guidelines. These
steps are model-agnostic but depend on the existence
of measured data from the building especially from
IoT sensors, BMS and AMR. Figure 2 shows a dia-
gram with the presented methodology. Notice that
this work describes the steps within the calibration
methodology box.



Figure 2: Model calibration workflow introduced in
this work.

Step 1: Check input priority matrix and SA
results

One of the most important steps when calibrating a
model is to have a clear idea of its end use. Know-
ing the purpose of the calibrated model will allow the
modeller to have a clear idea of the most critical pa-
rameters in a model, which potentially has thousands
of them. Once the end-use of the model has been
agreed, the use of input priority matrix provides the
relative importance of model parameters and mea-
sured data. This matrix has been created based on
a collection of IES’s best practices for model calibra-
tion. The full explanation of the matrix is out of the
scope of this paper, but the model applications con-
sidered in this matrix are:

• Long-term assessment

• Urban energy simulations

• Model-based commissioning

• Pre-occupancy commissioning

• Post-construction commissioning

• Retro-commissioning

• Measurement and verification

Parameters are divided into static (e.g. U-Values)
and dynamic (e.g. setpoints, internal gains, weather
data), as well as required measured data for calibra-
tion (e.g. monthly, hourly, sub-hourly). An example
of the relative importance of parameters and energy
data for a model that is intended to be used for retro-
commissioning is presented in Figure 3.

A follow-up work will describe in more detail each of
the model applications, including the justification of
the importance assessment. However, the intent is
that a model should be as reliable and accurate as
needed, not as possible, while satisfying the require-
ments of calibration standards.

The CIBSE TM63 guideline suggests the use of a SA
study to determine the relevant inputs. This step is
also considered in the present methodology and pro-
posed the use of a SA solution based on the Morris
method (Campolongo et al., 2007). This method cal-
culates the elementary effects (EE) to identity im-
portant inputs in large models. This method has

Figure 3: Example of relative importance of parame-
ters and measured energy data for calibrating a model
intended for retro-commissioning.

Figure 4: Example of SA results for an early-stage
warehouse model for Electricity and Gas consump-
tion. Parameters with higher relative impact in the
selected model output are sorted in descendent order.

been successfully used for model calibration and is
preferred due to its relative low-computational costs
and results explainability (Kristensen and Petersen,
2016). An example of a SA study of an early stage
model of a warehouse is presented in Figure 4. Ac-
cording to these results, equipment gains in the sales
space is the parameter that impact the most the to-
tal electricity demand and the heating setpoint on the
same space has the largest impact on gas demand.

However, at this stage we consider the that SA results
have complementary role to the matrix. While a SA
study is a more objective method to determine pa-
rameter importance compared to best-practice crite-
ria, it is difficult to carry out a study to determine rel-
ative importance between dynamic (time-series) and
static inputs. Also, a SA study done without any en-



Figure 5: Example of observed trends from motion
sensors in a building.

gineering criteria will likely have an excessive number
of parameters, specially when time-series inputs are
considered. Hence, the list of inputs is the result of
both the priority matrix and SA results.

Step 2: Data-driven time-series input data

In this step, the aim is to take advantage of existing
time-series data and incorporate it into the model in
the form of Free-From-Profiles (FFPs) or Parametric
Profiles (PPs). In this sub section, we describe them
in detail and provide example of the kind of situation
where each alternative is more adequate.

FFPs are used to import data coming directly from
a third-party source, e.g. a machine learning (ML)
model. An application of an ML model in the con-
text of model calibration is the Trended daily profiles,
a data driven adaptation of a technique defined as
“day-typing” by Reddy (2006). ML regression models
are used to generate a typical day for main occupied
spaces for each day of the week. Hour, Day of the
week, holidays and daylight saving time behaviours
can be captured in the model, making it possible to
account for typical occupancy behaviours not only
during the calibration stage but also during model
deployment. An example of observed motion trends
is presented in Figure 5. Trended profiles can then be
extrapolated for the rest of the year and also to fill in
gaps in the datasets. These profiles are then imported
to the model created in IES-VE as FFPs. Additional
trended inputs may include lighting usage and small
equipment usage patterns that can be obtained from
short-term measurements and extrapolated over the
calibration period.

PPs are useful to characterise dynamic inputs that
can be largely explained by a set operation rules. PPs
can be generated using syntax expressions based on
current hour of the day, outdoor temperatures, occu-
pancy levels and can be assigned to specific days. E.g.
Weekends and weekday setpoint PPs may be enough
in some cases to describe the whole-year heating pro-
files. Additional inputs that can be described with
PPs may include window-usage trends, HVAC on/off
schedules, or ventilation rates. It is possible also to
combine Trended profiles with parametric profiles, to
describe a building with or without COVID-19 social
distancing measures.

Step 3: Determine and fine-tune high-priority
parameters

A BES model has thousands of inputs and it is not
possible to determine all of them by direct measure-
ments due to resource constraints, hence most of the
time is imperative to derive inputs with high impor-
tance for the simulation in lieu of direct measure-
ments. This step is subdivided in (1) determine the
impact due to the uncertainty of high priority param-
eters by doing a SA study and (2) fine-tune shortlisted
parameters. Calibration metrics are the main driver
to determine if the uncertainty of an input is relevant
and whether the parameter fine-tuning is the optimal.

Calibration metrics for energy outputs are the Nor-
malised Mean Bias Error (NMBE), defined in Equa-
tion 1, and the Coefficient of Variation of the Root
Mean Squared Error (CVRMSE), defined in Equa-
tion 2.

NMBE(%) =

∑N
t=1(yt − ŷt)

(N − P )× µ
× 100% (1)

CV RMSE(%) =

√∑N

t=1
(yt−ŷt)2

N−P−1

µ
× 100% (2)

Following the CIBSE TM63 guideline, the recom-
mended calibration metrics for non-energy measure-
ments, such as air temperature and CO2 concentra-
tion include the Root Mean Squared Error (RMSE),
defined in Equation 3, and the Mean Absolute Error
(MAE), defined in Equation 4.

RMSE(unit) =

√∑N
t=1(yt − ŷt)2
N − 1

(3)

MAE(unit) =

∑N
t=1|yt − ŷt|
N − 1

(4)

These metrics have thresholds depending on whether
the simulation is calibrated at monthly or hourly in-
tervals, as presented in Table 1. However, for time-
series sensor data the monthly aggregation does not
apply.

Table 1: NMBE and CVRMSE calibration thresh-
olds for monthly and hourly intervals according to
ASHRAE (2002) and CIBSE (2020).

Monthly Hourly
NMBE 5% 10%

CVRMSE 15% 30%
RMSEtemp N/A 1.5 ◦C
MAEtemp N/A 1.5 ◦C

SA study for calibration metrics

To determine the impact that missing or uncertain
parameters have on the calibration metrics, a SA



Figure 6: SA for calibration metrics outputs for elec-
tricity use.

study based on the Morris method similar to the pre-
vious step is required. The difference in this step
with respect to the previous SA, is that the elemen-
tary effects are not in terms of model outputs but in
calibration metrics. The outputs of the SA are use-
ful to determine which variables can be shortlisted
in the next sub step. An example of the SA out-
puts for calibration metrics in a simple Warehouse
model are presented in Figure 6. According to these
results, equipment gains in the sales space is the pa-
rameter that impact the most the calibration metrics
(i.e. CVRMSE and NMBE) for electricity use.

Fine-tune shortlisted parameters

Shortlisted parameters can determined by using a hi-
erarchy of information sources and by optimisation-
based parameter search. Raftery et al. (2011) sug-
gests a hierarchy of information sources. In order of
priority, preferred sources are:

1. Data logged measurements

2. Short-term measurements

3. Observation from site survey

4. Interview to operator

5. Operation manuals

6. Commissioning documents

7. Benchmarks

8. Standards, specifications and guidelines

9. Design stage information

In order to fine-tune the final parameter values, an
optimisation-based method using the Ant Colony Op-
timisation (ACO) algorithm is used (Dorigo et al.,
2006). The cost function is designed to minimise all
the calibration metrics errors simultaneously. The
goal of the optimisation function consists of minimis-
ing the average of the Range-Normalised Root Mean
Squared Error (RNRMSE) for all outputs that have
metered data simultaneously. The intention of this
approach, is to ensure that space level outputs are
represented during the parameter search so that the
algorithm receives a penalty if the parameters devi-
ate from space level measurements. Chakraborty and
Elzarka (2018) proposed RNRMSE as an alternative
metric that normalises the RMSE by the range of the

data, as defined in Equation 5. RNRMSE can provide
a more meaningful representation of how the model
fits all the measured data regardless its scale, which
translates in a more robust optimisation algorithm.

RNRMSE(%) =

√∑N

t=1
(yt−ŷt)2

N−1

range(y)
× 100% (5)

The optimisation problem is then defined as:

min
x
f(x)

where x =
∑
RNRMSEoutput

Case study: the Helix building

The helix building is an office type building with a
floor area of 2,900 m2 and it was constructed post
2000s. The building has natural ventilation and heat-
ing is provided by a biomass (main) and natural gas
(backup) boilers. The building accommodates around
180 people. The building is controlled by two ther-
mostats. The typical temperature setpoint is 23 ◦C,
with a night setback of 15 ◦C for both of them. The
thermostat has two typical days: working and week-
end day. Additionally, a server room is equipped with
a cooling unit (mini-split) that keeps the equipment
at the correct operational temperature. Currently,
the building has 14 indoor environmental sensors at
desk level, plus 5 roof-level additional sensors. These
sensors communicate to a gateway every 10 minutes
with a 5-minute data sample interval. Additional
measurements include relative humidity, CO2, mo-
tion and lighting levels (lux).

An existing IES-VE model was updated with the cur-
rent building layout, constructions, orientation and
external shading elements. A 3D view of the model is
presented in Figure 7. The heating system has been
modelled using Apache HVAC, an IES-VE module
that allows detailed dynamic modeling of systems,
equipment, and controls (IES-VE, 2012). Using this
functionality, steel horizontal radiators with a 20 ◦C
reference temperature difference have been included
in all required rooms. Heat output is 1 kW per unit,
similar to the manufacture’s design value. Weight of
the radiator was estimated to be 40 kg with a capac-
ity of 9.9 liters, i.e. the simulation takes into account
the mass of water that needs to be heated within the
radiator before the room starts heating up and the
heating inertia after the system switches off. Addi-
tionally, radiators have a local proportional controller
to simulate the installed thermostatic radiator valves
(TRV). The server room is conditioned with a simpli-
fied mini-split HVAC system.

Case study: Input priority matrix for ongoing
commissioning

The calibration period is from the 01-October-2019 to
01-November-2019. The model will be calibrated for



Figure 7: IES-VE model of the Helix building.

Figure 8: Motion trends for three meeting rooms in
the Helix building, where blue means no motion and
red means high motion periods. The motion is used
as a predictor of occupancy and equipment gains mod-
ulation.

electricity use and space air temperatures at hourly
intervals with a 2-minute simulation timestep. The
application of the model is ongoing commissioning.
This is a typical application of a calibrated model
that can be used to constantly interrogate measured
variables in a building and spot inefficient operations
as they occur. According to the input priority ma-
trix, fixed parameters with high importance include
HVAC layout and schematics and HVAC equipment
and specifications. Relevant dynamic parameters are:
room setpoints, site weather data and schedules (e.g.
lighting, equipment, system and occupancy).

Case study: Data-driven profiles for main oc-
cupied rooms

Motion detection in various areas of the buildings are
used as a proxy value to determine occupancy,lighting
and equipment profiles, see Figure 8. These trends
are generated using a machine learning regression
model for the occupied areas under the assumption
that motion is a significant predictor of internal gains,
and that it can be correlated with independent vari-
ables such as day-of-week, time-of-day, holiday calen-
dar and weather variables. The occupancy trends are
exported to the models via FFPs.

Heating setpoints are derived from air temperature
readings for both weekday (Figure 9) and weekends

Figure 9: Setpoint estimation for weekdays. Red re-
gion shows an overlay view of air temperatures across
weekdays, green line represents the setpoint which was
exported as a PP to the IES-VE model.

Figure 10: Setpoint estimation for weekends. Red re-
gion shows an overlay view of air temperatures across
weekends, green line represents the setpoint which was
exported as a PP to the IES-VE model.

(Figure 10). Using overlay plots, it is possible to visu-
ally determine if a temperature setpoint has occurred
during a given month or week. A PP of the setpoint
for each relevant room of the building was created
and assigned to the model.

Case study: Determine and fine-tune high-
priority parameters

For this model, weather data is obtained from a
weather station located in the rooftop complemented
with METeorological Aerodrome Reports (METAR)
data from a station located at Paisley Airport in Glas-
gow. Fixed parameters, such as U-values and HVAC
specifications, are calculated using as-built drawings
and energy audit information. A summary of the ini-
tial high-priority inputs are explained in the following
list. Notice that uncertain parameters are highlighted
in bold.

• Trees added as local shading

• Ground temperature based on OAT 30-day mov-
ing average

• U-Values for Roof 0.155 W/m2K Walls 0.26
W/m2K

• Initial estimated infiltration rate of 0.25
ACH

• Initial estimated lighting density 8 W/m2

• Initial estimated equipment 12 W/m2

• Initial server room cooling sp 23 ◦C



Figure 11: EE for electricity in terms of CVRMSE
and NMBE.

Once FFPs for internal gains, PPs for setpoints, static
inputs and weather data have been assigned to the
model, the uncertain parameters are ranked in terms
of relative impact to the calibration metrics. To
avoid an excessive number of parameters, spaces were
grouped by activity: Meeting rooms, open plan office,
and server room. The SA algorithm requires a range
of values for each of the input parameters. Using
the SA IES tool, it is possible to change the value of
a space or a group of spaces via a scaling factor or
absolute values. In this case, all parameters that rep-
resent internal gains have a range based on a scaling
factor between 0.7 to 1.3, which represents the range
of the uncertainty. The cooling setpoint temperature
of the server room, on the other hand, is represented
as a range of absolute values. All the parameters and
ranges are presented in Table 2.

Table 2: Full list of parameters that may need to be
fine-tuned. Shortlisted parameters for optimisation
are marked with a star character *. We selected all
parameters due to the large number of measurements
available for calibration.

Parameter Abs/Scale Range
Open plan offices - Equip* Scale 0.7-1.3

Open plan offices - Lighting* Scale 0.7-1.3
Open plan offices - Inf* Scale 0.7-1.3
Meeting rooms - Equip* Scale 0.7-1.3

Meeting rooms - Lighting* Scale 0.7-1.3
Meeting rooms - Inf* Scale 0.7-1.3

Server room - cooling SP* Abs 21-24
Server room - Equip* Scale 0.5-2

The SA for calibration metrics both for electricity,
in terms of CVRMSE and NMBE, and air tempera-
tures, in terms of RMSE and MAE, are calculated a
number of levels 4 and 30 samples, which translates
into 350 total simulations. The process was calcu-
lated using an 16-core and 32 GB RAM virtual ma-
chine. The total calculation time was 3352 seconds.
Figure 11 shows the EE for electricity demand during
the calibration period. Equipment gains in the server
room are the main single relevant parameter that im-
pacts the calibration metrics for electricity. On the
other hand, infiltration values have negligible impact
on electricity, since heating is provided by a biomass
boiler, however, the value is not zero probably due to
the impact on cooling loads.

Figure 12 shows the EE for air temperature in a se-
lected meeting room during the calibration period.

Figure 12: SA parameters for air temperature in an
meeting room in terms of RMSE and MAE.

Table 3: Calibration metrics for hourly electricity use.
CVRMSE before CVRMSE after

Electricity 70.35% ◦C 15.89%
NMBE before NMBE after

Electricity -40.48% ◦C -7.09%

Results are not as straightforward in this case. The
main parameter that drives the RMSE for air tem-
peratures are the infiltration rates from the open ar-
eas.Whereas the infiltration rate of the meeting rooms
is the main parameter that drives changes in MAE.
On the other hand, there is an agreement that pa-
rameters related to the server room are not relevant
for this meeting room.

Based on the SA results and the number of model
outputs that can be used to calibrating the model
(eleven), it was decided to leave the eight parameters
for the actual calibration process. The total number
of simulation was 500, this number is product of 50
iterations and a population number of 10. The pro-
cess was calculated on an 16-core 32 GB RAM vir-
tual machine and the total calculation time was 4394
seconds.Table 3 shows the calibration metrics before
and after for electricity demand. Notice that the new
metrics are below the calibration thresholds.

Table 4 shows the calibration metrics before and after
for air temperature in selected spaces. Even though
the calibration metrics for air temperature were al-
ready below the recommended threshold, most of
them showed an additional improvement. These re-
sults suggest that no compromise was required to
meet the calibration metrics for electricity.

Case study: Results comparison

After optimisation is completed, it is possible to re-
cover the model parameters with their original units.
Parameters before and after optimisation are pre-

Table 4: Calibration metrics for air temperatures in
selected rooms.

Space (Group) RMSE before RMSE after
Nevis (Meeting room) 1.42 ◦C 1.24 ◦C

Cuillings (Meeting Room) 0.98 ◦C 0.79 ◦C
Grampian (Meeting Room) 1.22 ◦C 1.36 ◦C
Consultancy (Open area) 0.97 ◦C 0.90 ◦C

Support (Open Area) 1.07 ◦C 1.06 ◦C
Server room 0.72 ◦C 0.47 ◦C

Torridon (Meeting Room) 1.14 ◦C 0.91 ◦C
Training (Meeting Room) 1.32 ◦C 1.29 ◦C
Knoydart (Meeting Room) 1.26 ◦C 1.24 ◦C
Developers (Open Area) 1.22 ◦C 1.08 ◦C

Average 1.13 ◦C 1.06 ◦C



Table 5: Parameters before and after calibration. Av-
erage value of the spaces on each group.

Parameter Updated
Open plan offices - Lighting 6.81 W/m2

Open plan offices - Equip 9.56 W/m2

Open plan offices - Inf 0.24 ACH
Meeting rooms - Equip 9.18 W/m2

Meeting rooms - Lighting 10.01 W/m2

Meeting rooms - Inf 0.55 ACH
Server room - Equip 39.78 W/m2

Server room - cooling SP 23.63 ◦C

Figure 13: Simulated vs measured air temperature re-
sults during a week.

sented in Table 5.

The average RMSE has improved from 1.13 ◦C to
1.06 ◦C, both are well below the values recommended
in CIBSE TM63. Air temperature results during a
week within the calibration period are presented in
Figure 13. In this plot, it can be noticed that there
seems to be a close match between the simulated and
metered temperatures, especially during the warm up
and cool down times and the weekend.

On the energy side, electricity values are calculated
when compared to sub-metered electricity readings
covering the ground floor. These have been adjusted
to remove the effect of a two-car electric vehicle (EV)
charging unit connected to the building, due to the
reason that EV charging station is outside the scope
of the model, Figure 14.

It is worth noticing that the time taken to calibrate
the model is now significantly reduced as a result
of the automated SA and Optimisation. In total,
around 860 simulations were required to achieve these
metrics from which 850 were part of an automated
process. The process was completed in less than 7
hours. Previous attempts to manually fine-tune un-
certain parameters resulted in higher calibration met-
rics, e.g. CVRMSE > 25%; substantially higher con-
sultancy time, e.g. three working days; with only
visual estimations of the uncertainty at space level.

Conclusions

In this paper, we present a calibration methodol-
ogy derived from IES’ best practices and calibration
guidelines. The calibration methodology is model-
agnostic and relies on a 3-step process that consist
of (1) checking input priority matrix and SA results,
(2) create data-driven profiles for high priority inputs,

Figure 14: Measured (solid line) vs simulated (dashed
line) electricity data for the ground used for electricity
calibration of the model. Notice that periods when EV
cars are being charged are not being simulated by the
model.

and (3) determine and fine-tune high-priority param-
eters. The process relies on the use of specialised tools
for Sensitivity Analysis, Optimisation-based parame-
ter derivation and calibration metrics computation.

Using an office building in Scotland as a case study,
we did an hourly level calibration of a model intended
for ongoing commissioning. Internal gains modula-
tion (i.e. lighting, equipment and occupancy) are in-
cluded in the model as FFPs derived from time-series
data from sensors using a machine learning regression
model. Lighting and equipment intensity, infiltration
and setpoints were determined for spaces grouped by
activity, e.g. open office areas and meeting rooms.
A SA determined the most relevant variables for the
optimisation-based parameter search, and an ACO
algorithm was used to fine-tune the final gains, infil-
tration rates and the server room setpoint.

Electricity calibration achieves a NMBE -7.09% and
CVRMSE of 15.89%. Most of the calibration metrics
for air temperatures were improved in average 6%
and there were kept within the 1.5 ◦C recommended
threshold. Based on these findings, we provide evi-
dence that metered data can benefit the model pre-
diction outputs both at the energy and space level
and that SA and optimisation tools can speed up the
calibration process.
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