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Introduction

Building Energy Simulations (BES) are used:

Design stage
• Inform design decisions (Manz et al., 2018)
• Evaluate occupants' comfort (ASHRAE Standard 55-2013)
• Ensure compliance with energy efficiency codes (Energy Step Code, PRM ASHRAE 90.1)
• Gain credits in building rating systems (LEED and BREAM)

Operational stage
• Energy savings estimation (M&V)
• Model-based Fault Detection and Diagnostics (FDD) 
• Model predictive control (MPC)
• Enabling model-free control techniques Reinforcement Learning (RL) 
• Evaluation of demand-response (DR) technologies
• Prediction of future savings as a result of retro-commissioning activities.
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Introduction

“The process of reducing the uncertainty of a model by comparing the 
predicted output of the model under a specific set of conditions to the actual 
measured data for the same set of conditions“ (ASHRAE, 2002).

However, model calibration is widely recognised as a time consuming activity. 
Identified challenges are:
• Lack of standardization
• Costs
• Model input data
• Uncertainty
• Lack of automation

CIBSE TM63 Evidence based calibration workflow (CIBSE, 2020)
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Methodology

This methodology is aimed for buildings 
with available time-series data consisting 
of three high-level stages: 

1. Check input priority matrix and SA 
results

2. Create data-driven profiles for high 
priority inputs

3. Determine and fine-tune high-
priority parameters.
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Methodology – Calibration metrics

Totalled units (energy-related outputs)
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Untotalled units (temperature, C02)

Thresholds (ASHRAE (2014) and CIBSE (2020)). 



Methodology - Check input priority matrix 
and SA results

Based on the end-use of the model, look up the most critical parameters in a model. 
Long term applications rely more on envelope properties, short term require day to day information.

End-uses are:
• Long-term assessment
• Urban energy simulations
• Model-based commissioning
• Pre-occupancy commissioning
• Post-construction commissioning
• Retro-commissioning
• Measurement and verification
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Methodology - Check input priority matrix 
and SA results

Optionally, a sensitivity analysis can provide a more accurate priority list:
• Morris method + LHS (Campolongo et al., 2007).
• A growing list of model transforms (lighting gain, equipment gain, infiltration, COP, ventilation rates, …)
• Space level parameters can be grouped (e.g. by activity, location, floor,…)
• A feasible range for each transform and group is required
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Transform 1 
e.g. Lighting max 

gain

Transform 2 
e.g. Air exchanges 

per hour

Space group 1

Space group 2

Space group 1

Space group 2
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Methodology – Create data driven profiles

The aim is to take advantage of existing time-series data and incorporate it into 
the model in the form of Free-From-Profiles (FFPs) or Parametric Profiles (PPs).
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Free-From-Profiles (FFPs) 
FFPs are used to import data coming directly 
from a third-party source, e.g. a machine 
learning (ML) model.

Parametric Profiles (PPs)
PPs used to characterise dynamic inputs 
largely explained by a set operation rules. 
(use syntax expressions)



Methodology - Determine and fine-tune 
high-priority parameters
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Initial value from a hierarchy of information sources. Raftery et al. (2011) 
1. Data logged measurements
2. Short-term measurements
3. Observation from site survey
4. Interview to operator
5. Operation manuals
6. Commissioning documents
7. Benchmarks
8. Standards, specifications and guidelines
9. Design stage information

Transform 1

Transform 2

Space group 1

Space group 2

Space group 1

Space group 2

Uncertainty range

Uncertainty range

Uncertainty range

Uncertainty range



Methodology - Determine and fine-tune 
high-priority parameters
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To fine-tune the parameter values, an optimisation-based method using the Ant Colony 
Optimisation (ACO) algorithm is used (Dorigo et al., 2006)

The optimisation problem is then defined as finding 
the minimum sum of RNRMSE for all outputs

Optimise for all outputs simultaneously . Calculates the 
range normalized root mean squared error for all 
simulated and metered outputs (Chakraborty et 
al.,2018).



Case study: Office building
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• The helix building is an office type building with a floor area of 2,900 m2
• The building has natural ventilation and heating is provided by a biomass (main) 
• Accommodates around 180 people. 
• Controlled by two thermostats. 
• The typical temperature setpoint is 23 C, with a night setback of 15 C. 
• The thermostat has two typical days: working and weekend day.
• A server room is equipped with a cooling unit (mini-split).
• Currently, the building has 14 indoor environmental sensors at desk level
• Smart metering



Case study: Input priority matrix for ongoing
commissioning
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• The calibration period 01-October-2019 to 01-
November-2019. 

• Electricity use and space air temperatures hourly 
calibration.

• The application of the model is ongoing 
commissioning. Fixed parameters with high 
importance include HVAC layout and schematics and 
HVAC equipment and specifications. 

• Relevant dynamic parameters are: room setpoints, site 
weather data and schedules (e.g. lighting, equipment, 
system and occupancy).



Case study: Data-driven profiles for main 
occupied rooms
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• Motion detection used as a proxy value to determine occupancy, lighting and equipment 
profiles. The occupancy trends are exported to the models via FFPs.

• Heating setpoints are derived from air temperature readings for  weekday and weekends. A 
PP of the setpoint for each relevant room of the building was created



Case study: Determine and fine-tune high-
priority parameters
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Model parameters (uncertain parameters):
• Weather data from station located in the 

rooftop complemented with METAR data
• Ground temperature based on OAT 30-day 

moving average
• U-Values for Roof 0.155 W/m2K Walls 0.26 

W/m2K
• Initial estimated infiltration rate of 0.25 ACH
• Initial estimated lighting density 8 W/m2
• Initial estimated equipment 12 W/m2
• Initial server room cooling setpoint 23 C

Sensitivity analysis (350 sims). 
The total calculation time was 3352 seconds.



Case study: Determine and fine-tune high-
priority parameters
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• 500 simulations were required 
• The total calculation time was 4394 seconds.



Conclusion
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• The calibration methodology is model-agnostic and relies on a 3-step process
• The process relies on the use of specialised tools for Sensitivity Analysis, Optimisation-based fine-

tuning and calibration metrics computation.
• A SA determined the most relevant variables for the optimisation-based parameter fine tuning
• The ACO algorithm was used to  fine-tune the internal gains, infiltration rates and the server room 

setpoint.
• Electricity calibration achieves a NMBE -7.09% and CVRMSE of 15.89%. 
• Air temperatures were improved in average 6% were kept within the 1.5 C recommended threshold. 
• We provide evidence that metered data can benefit the model prediction outputs both at the energy 

and space level and that SA and optimisation tools can speed up the calibration process.
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